Error estimates for partial differential equations
نویسندگان
چکیده
منابع مشابه
global results on some nonlinear partial differential equations for direct and inverse problems
در این رساله به بررسی رفتار جواب های رده ای از معادلات دیفرانسیل با مشتقات جزیی در دامنه های کراندار می پردازیم . این معادلات به فرم نیم-خطی و غیر خطی برای مسایل مستقیم و معکوس مورد مطالعه قرار می گیرند . به ویژه، تاثیر شرایط مختلف فیزیکی را در مساله، نظیر وجود موانع و منابع، پراکندگی و چسبندگی در معادلات موج و گرما بررسی می کنیم و به دنبال شرایطی می گردیم که متضمن وجود سراسری یا عدم وجود سراسر...
Some L* Estimates for Partial Differential Equations
to hold for functions u satisfying given (possibly void) boundary conditions, where the Ak are linear partial differential operators, p is greater than one, and || • j | , , 3 , is an L p norm defined for all real values of 5. When 5 is a non-negative integer, ||w||8fl, is essentially the sum of the L norms of u and all its derivatives up to order s. We do not require that the A * be of the sam...
متن کاملError Estimates for Time Accurate Wavelet Based Schemes for Hyperbolic Partial Differential Equations
In this study, we derive error estimates for time accurate wavelet based schemes in two stages. First we look at the semi-discrete boundary value problem as a Cauchy problem and use spectral decomposition of self adjoint operators to arrive at the temporal error estimates both in L2 and energy norms. Later, following the wavelet approximation theory, we propose spatial error estimates in L2 and...
متن کاملStrong and weak error estimates for the solutions of elliptic partial differential equations with random coefficients
We consider the problem of numerically approximating the solution of an elliptic partial di erential equation with random coe cients and homogeneous Dirichlet boundary conditions. We focus on the case of a lognormal coe cient, we have then to deal with the lack of uniform coercivity and uniform boundedness with respect to the randomness. This model is frequently used in hydrogeology. We approxi...
متن کاملError Estimates under Minimal Regularity for Single Step Finite Element Approximations of Parabolic Partial Differential Equations
This paper studies error estimations for a fully discrete, single step finite element scheme for linear parabolic partial differential equations. Convergence in the norm of the solution space is shown and various error estimates in this norm are derived. In contrast to like results in the extant literature, the error estimates are derived in a stronger norm and under minimal regularity assumpti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applications of Mathematics
سال: 1968
ISSN: 0862-7940,1572-9109
DOI: 10.21136/am.1968.103159